4,741 research outputs found

    Staggered Chiral Perturbation Theory

    Full text link
    We discuss how to formulate a staggered chiral perturbation theory. This amounts to a generalization of the Lee-Sharpe Lagrangian to include more than one flavor (i.e. multiple staggered fields), which turns out to be nontrivial. One loop corrections to pion and kaon masses and decay constants are computed as examples in three cases: the quenched, partially quenched, and full (unquenched) case. The results for the one loop mass and decay constant corrections have already been presented in Ref. [1].Comment: talk presented by C. Aubin at Lattice2002(spectrum); 3 pages, 1 figur

    Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks

    Get PDF
    We present a lattice calculation of the hadronic vacuum polarization and the lowest-order hadronic contribution to the muon anomalous magnetic moment, a_\mu = (g-2)/2, using 2+1 flavors of improved staggered fermions. A precise fit to the low-q^2 region of the vacuum polarization is necessary to accurately extract the muon g-2. To obtain this fit, we use staggered chiral perturbation theory, including the vector particles as resonances, and compare these to polynomial fits to the lattice data. We discuss the fit results and associated systematic uncertainties, paying particular attention to the relative contributions of the pions and vector mesons. Using a single lattice spacing ensemble (a=0.086 fm), light quark masses as small as roughly one-tenth the strange quark mass, and volumes as large as (3.4 fm)^3, we find a_\mu^{HLO} = (713 \pm 15) \times 10^{-10} and (748 \pm 21) \times 10^{-10} where the error is statistical only and the two values correspond to linear and quadratic extrapolations in the light quark mass, respectively. Considering systematic uncertainties not eliminated in this study, we view this as agreement with the current best calculations using the experimental cross section for e^+e^- annihilation to hadrons, 692.4 (5.9) (2.4)\times 10^{-10}, and including the experimental decay rate of the tau lepton to hadrons, 711.0 (5.0) (0.8)(2.8)\times 10^{-10}. We discuss several ways to improve the current lattice calculation.Comment: 44 pages, 4 tables, 17 figures, more discussion on matching the chpt calculation to lattice calculation, typos corrected, refs added, version to appear in PR

    A new approach for Delta form factors

    Full text link
    We discuss a new approach to reducing excited state contributions from two- and three-point correlation functions in lattice simulations. For the purposes of this talk, we focus on the Delta(1232) resonance and discuss how this new method reduces excited state contamination from two-point functions and mention how this will be applied to three-point functions to extract hadronic form factors.Comment: 4 pages, 3 figures, talk given at MENU 2010, Williambsurg, V

    A Possible Aoki Phase for Staggered Fermions

    Full text link
    The phase diagram for staggered fermions is discussed in the context of the staggered chiral Lagrangian, extending previous work on the subject. When the discretization errors are significant, there may be an Aoki-like phase for staggered fermions, where the remnant SO(4) taste symmetry is broken down to SO(3). We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss qualitatively the 2+1-flavor case. From numerical results we find that current simulations are outside the staggered Aoki phase. As for near-future simulations with more improved versions of the staggered action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass, although the evidence is not conclusive.Comment: 27 pages, 8 figures, uses RevTe

    Current Physics Results from Staggered Chiral Perturbation Theory

    Get PDF
    We review several results that have been obtained using lattice QCD with the staggered quark formulation. Our focus is on the quantities that have been calculated numerically with low statistical errors and have been extrapolated to the physical quark mass limit and continuum limit using staggered chiral perturbation theory. We limit our discussion to a brief introduction to staggered quarks, and applications of staggered chiral perturbation theory to the pion mass, decay constant, and heavy-light meson decay constants.Comment: 18 pages, 4 figures, commissioned review article, to appear in Mod. Phys. Lett.

    Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    Full text link
    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\schpt), working to leading order in 1/mQ1/m_Q, where mQm_Q is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→πB\to\pi and D→KD\to K when the light quarks are simulated with the staggered action.Comment: 53 pages, 8 figures, v2: Minor correction to the section on finite volume effects, and typos fixed. Version to be published in Phys. Rev.

    Order of the Chiral and Continuum Limits in Staggered Chiral Perturbation Theory

    Full text link
    Durr and Hoelbling recently observed that the continuum and chiral limits do not commute in the two dimensional, one flavor, Schwinger model with staggered fermions. I point out that such lack of commutativity can also be seen in four-dimensional staggered chiral perturbation theory (SChPT) in quenched or partially quenched quantities constructed to be particularly sensitive to the chiral limit. Although the physics involved in the SChPT examples is quite different from that in the Schwinger model, neither singularity seems to be connected to the trick of taking the nth root of the fermion determinant to remove unwanted degrees of freedom ("tastes"). Further, I argue that the singularities in SChPT are absent in most commonly-computed quantities in the unquenched (full) QCD case and do not imply any unexpected systematic errors in recent MILC calculations with staggered fermions.Comment: 14 pages, 1 figure. v3: Spurious symbol, introduced by conflicting tex macros, removed. Clarification of discussion in several place
    • …
    corecore